首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   9篇
  国内免费   1篇
大气科学   8篇
地球物理   33篇
地质学   36篇
海洋学   4篇
天文学   7篇
自然地理   4篇
  2022年   2篇
  2021年   7篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   10篇
  2016年   13篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   10篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有92条查询结果,搜索用时 381 毫秒
71.
The Balagne ophiolite from central-northern Corsica represents a continent-near paleogeographic domain of the Jurassic Liguria-Piedmont ophiolitic basin. Pillow and massive basalt lavas are primarily associated with Middle–Upper Jurassic pelagic sediments (mostly radiolarites at their base), continental-derived quartzo-feldspathic clastic sediments and ophiolitic breccias containing clasts of gabbros and basalts. The basalt-sedimentary succession is tectonically associated with a slice composed of an intrusive sequence overlain by basalt lavas. A “plagiogranite” from the intrusive sequence was dated by U–Pb zircon geochronology. Although affected by some uncertainty, mainly reflecting common Pb contamination, the U–Pb zircon data suggest a crystallization age of 159 ± 3 Ma (MSWD = 6.3), which is coeval with the formation of oceanic lower crust in the Schistes Lustrés units from Alpine Corsica. The predominance of quartz grains preserving typical volcanic shape, the prevalence of prismatic zircons and the arkose whole-rock composition indicate that the continental-derived quartzo-feldspathic clastic sediments have a low degree of textural maturity. U–Pb zircon geochronology carried out on two distinct levels of quartzo-feldspathic clastic sediments identified the predominance of zircons with within error U–Pb dates at ~280 Ma; minor components at ~457, ~309 and ~262 Ma were also obtained. The U–Pb date distribution is consistent with a source magmatic material mostly developed during the Variscan orogenic collapse.  相似文献   
72.
1IntroductionPrincipalcomponentanalysishasbeenwidelyusedtostudythetemporalandspatialbehaviourofatmosphericandoceanicfields....  相似文献   
73.
A multi-model analysis of Atlantic multidecadal variability is performed with the following aims: to investigate the similarities to observations; to assess the strength and relative importance of the different elements of the mechanism proposed by Delworth et al. (J Clim 6:1993–2011, 1993) (hereafter D93) among coupled general circulation models (CGCMs); and to relate model differences to mean systematic error. The analysis is performed with long control simulations from ten CGCMs, with lengths ranging between 500 and 3600 years. In most models the variations of sea surface temperature (SST) averaged over North Atlantic show considerable power on multidecadal time scales, but with different periodicity. The SST variations are largest in the mid-latitude region, consistent with the short instrumental record. Despite large differences in model configurations, we find quite some consistency among the models in terms of processes. In eight of the ten models the mid-latitude SST variations are significantly correlated with fluctuations in the Atlantic meridional overturning circulation (AMOC), suggesting a link to northward heat transport changes. Consistent with this link, the three models with the weakest AMOC have the largest cold SST bias in the North Atlantic. There is no linear relationship on decadal timescales between AMOC and North Atlantic Oscillation in the models. Analysis of the key elements of the D93 mechanisms revealed the following: Most models present strong evidence that high-latitude winter mixing precede AMOC changes. However, the regions of wintertime convection differ among models. In most models salinity-induced density anomalies in the convective region tend to lead AMOC, while temperature-induced density anomalies lead AMOC only in one model. However, analysis shows that salinity may play an overly important role in most models, because of cold temperature biases in their relevant convective regions. In most models subpolar gyre variations tend to lead AMOC changes, and this relation is strong in more than half of the models.  相似文献   
74.
In this paper, a recently theoretically deduced rill flow resistance equation, based on a power‐velocity profile, was tested using the Water Erosion Prediction Project database. This database includes measurements of flow velocity, water depth, cross section area, wetted perimeter, and bed slope that were made in rills shaped on experimental sites distributed across the continental United States. In particular, three different experimental conditions (only rainfall, only flow, and rain with flow) were examined, and for each condition, the theoretically based relationship for estimating the Γ function of the power velocity profile was calibrated. The results established that (a) the Darcy‐Weisbach friction factor can be accurately estimated using the proposed theoretical approach, and (b) the flow resistance increases with the effect of rainfall impact.  相似文献   
75.

We study the impact of horizontal resolution in setting the North Atlantic gyre circulation and representing the ocean–atmosphere interactions that modulate the low-frequency variability in the region. Simulations from five state-of-the-art climate models performed at standard and high-resolution as part of the High-Resolution Model Inter-comparison Project (HighResMIP) were analysed. In some models, the resolution is enhanced in the atmospheric and oceanic components whereas, in some other models, the resolution is increased only in the atmosphere. Enhancing the horizontal resolution from non-eddy to eddy-permitting ocean produces stronger barotropic mass transports inside the subpolar and subtropical gyres. The first mode of inter-annual variability is associated with the North Atlantic Oscillation (NAO) in all the cases. The rapid ocean response to it consists of a shift in the position of the inter-gyre zone and it is better captured by the non-eddy models. The delayed ocean response consists of an intensification of the subpolar gyre (SPG) after around 3 years of a positive phase of NAO and it is better represented by the eddy-permitting oceans. A lagged relationship between the intensity of the SPG and the Atlantic Meridional Overturning Circulation (AMOC) is stronger in the cases of the non-eddy ocean. Then, the SPG is more tightly coupled to the AMOC in low-resolution models.

  相似文献   
76.
77.
78.
The current technological developments in autonomous underwater vehicles (AUVs) and underwater communication have nowadays allowed to push the original idea of autonomous ocean sampling network even further, with the possibility of using each agent of the network not only as an operative component driven by external commands (model-driven) but as a reactive element able to act in response to changing conditions as measured during the exploration (data-driven). With this paper, we propose a novel data-driven algorithm for AUVs team for adaptive sampling of oceanic regions, where each agent shares its knowledge of the environment with its teammates and autonomously takes decision in order to reconstruct the desired oceanic field. In particular, sampling point selection is made in order to minimize the uncertainty in the estimated field while keeping communication contact with the rest of the team and avoiding to repeatedly sampling sub-regions already explored. The proposed approach is based on the use of the emergent behaviour technique and on the use of artificial potential functions (interest functions) to achieve the desired goal at the end of the mission. In this way, there is no explicit minimization of a cost functional at each decision step. The oceanic field is reconstructed by the application of radial basis functions interpolation of irregularly spaced data. A simulative example for the estimation of a salinity field with sea data obtained using the Mediterranean Sea Forecasting System is shown in the paper, in order to investigate the effect of the different uncertainty sources, including sea currents, on the behaviour of the exploration team and ultimately on the reconstruction of the salinity field.  相似文献   
79.
The persistent normal activity of Stromboli is occasionally interrupted by sudden and highly energetic explosive events called Strombolian paroxysms. These phenomena together with landslide-generated tsunamis represent the most hazardous manifestations of present-day volcanic activity at Stromboli. The most recent paroxysms, on 5 April 2003 and 15 March 2007, have drawn attention to these energetic events because they significantly threatened inhabitants and tourists. Historical accounts and field evidence indicate, however, that even larger paroxysms, in terms of volume, dispersal of products and intensity of explosive phenomena, occurred in the recent past. During these paroxysms incipiently welded spatter deposits mantled the north and south rims of the Sciara del Fuoco down to low elevations, extending much farther than the similar deposits from recent observed events (5 April 2003 and 15 March 2007). In order to identify, characterize and discriminate among products of these outstanding spatter-forming eruptions, more than 50 stratigraphic sections were measured and sampled. Stratigraphic, sedimentological and radiometric (14C) data indicate that only two paroxysms produced spatter that reached very low elevations and inhabited areas: the first occurred in the 16th century and the last in AD 1930. Analysis of texture and deposit components reveals that the early phases of the two eruptions were driven by distinctly different eruptive dynamics. Both identified paroxysms are at least one order of magnitude greater than any similar event observed by monitoring systems at Stromboli. These two large paroxysms were the most powerful volcanic events at Stromboli in the last eighteen centuries.  相似文献   
80.
Over the last 15 years improved awareness of wave impact induced failures has focused attention on the need to account for the dynamic response of maritime structures to wave impact load. In this work a non-linear model is introduced that allows evaluating the effective design load and the potential sliding of caisson breakwater subject to both pulsating and impulsive wave loads. The caisson dynamics is modelled using a time-step numerical method to solve numerically the equations of motion for a rigid body founded on multiple non-linear springs having both horizontal and vertical stiffness. The model is first shown to correctly describe the dynamics of caisson breakwaters subject to wave attack, including nonlinear features of wave–structure–soil interaction. Predictions of sliding distances by the new method are then compared with measurements from physical model tests, showing very good agreement with observations. The model succeeds in describing the physics that stands behind the process and is fast, accurate and flexible enough to be suitable for performance design of caisson breakwaters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号